

10th IFIP WG 8.1 Practice of Enterprise Modelling Conference Workshop on Practicing Open Enterprise Modelling within OMiLAB (PROSE) Nov. 22th-24th, 2017, Leuven, Belgium

Engineering the Cooking Recipe Modelling Method: a Teaching Experience Report

Prof. Dr. Robert Buchmann,

Lect. Dr. Ana-Maria Ghiran

University Babeş-Bolyai of Cluj Napoca, Romania

Agenda

- Motivation
- Teaching artefact
 - including the artefact building blocks
- Teaching method
 - including the targeted engineering method
- Example
- Conclusions

Where am I from?

- Babeş-Bolyai University of Cluj-Napoca, Romania
- biggest city in Transylvania & friendliest city for foreigners in Europe (cf. UK's Office for National Statistics)
- largest and oldest Higher Education Institution in Romania

The Faculty of Economics and Business Administration

- largest faculty in Babeș-Bolyai University
- offers a study track on **Business Information Systems** that involves Conceptual Modelling on several study levels:

	TOPICS	Means of involving Conceptual Modelling
Professional Level	Semantic Technology,	As a Design Science approach
(PhD or PostDoc	Enterprise Modelling,	As a Knowledge Externalization approach
Research)	Knowledge Management Systems,	As an enabler for engineering novel Modelling Methods, Languages and
	Business Process Management Systems	Tools
		 As an enabler for Agile model-driven engineering
Master Level		
	Challenge:	
	How to bridge the gap between Bachelor level and Professional level?	
Bachelor Level	Database Design,	UML & ER modelling subordinated to Software Engineering disciplines
	Software Design	(perceived as "means-to-an-end" subserving Software Engineering

The typical BIS Master Student profile

• Majority: Business Information Systems and Computer Science graduates. Minority: Business Administration graduates

• Dominant modelling experience:

- UML and ER diagrams to document their bachelor thesis projects
- Tools: MS Visio, Powerpoint, various free "drawing tools" providing UML templates

• Dominant perception on Conceptual Modelling (CM):

- It is a form of "drawing" with "predefined" symbols
- It aims to support human understanding of system designs (as alternative to text)
- CS graduates are familiar with the "code generation" use case, but rarely employed it
- Generally, CM is a technique subordinated to Software Engineering and employs established standards

Common fallacies in CM perception

- Limited understanding of CM goals and its application areas

 "CM is a Software Engineering activity"
- Lack of awareness on the distinction between CM and "drawing with predefined symbols"
 - \circ "main purpose of CM is graphical documentation with predefined symbols"
- Lack of awareness on the modelling method building blocks (semantics, syntax, notation etc.)

o general confusion between modelling method, modelling language, modelling tool

• Lack of awareness on the agile conceptualization of CM methods

 \odot "modelling languages are fixed, invariant standards"

- Weak understanding of model qualities and model-to-reality relation
 - \circ "good models are those that accurately(!?) reflect reality"

The targeted revelations

The teaching artefact: a Modelling Method

cf. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.), Proceedings of the Third International Conference EC-Web 2002 – DEXA 2002. LNCS 2455, pp 182, Springer (2002)

Underlying method: Agile Modelling Method Engineering*

* cf. Karagiannis, D. (2015). "Agile modelling method engineering" In: *Proceedings of the 19th Panhellenic Conf. on Informatics*. Ed. by N. Karanikolas, D. Akoumianakis, N. Mara, D. Vergados, X. Michalis, ACM, p. 5-18.

PrOse 2017

Interactive Teaching Method

Re-inspecting the modelling method and reflect on

- how it was specified
- how it was (re)implemented

*ADOxx as fast prototyping environment **AMME as conceptualization methodology

Design rationale for the modelling method

Key characteristics of the **modelling method** developed interactively:

- 1. The application domain detached from Software Engineering
- 2. Minimalism (requires minimal domain knowledge, fully deployed in 2 hands-on meetings plus 1 for theoretical reflection)
- 3. Domain-specificity manifests in all building blocks (notation, semantics, functionality etc.),
- 4. Targets Knowledge Externalization (rather than Software Design)
- 5. It is a **Design Science artefact** (i.e., driven by some situational requirements)
- 6. It can itself evolve agilely (i.e., agility manifests at modelling method level, not limited to model contents level)
- 7. It stimulates lateral thinking (i.e., clashes dominant perception with what is revealed by hands-on experience)

The Application Scenario

Application Domain: Cooking

Use Case: Knowledge Management in a Food Establishment

Modelling Method goal: to externalize cooking recipes in a diagrammatic knowledge base (i.e., can be queried for analysis and knowledge retrieval)

Rationale:

- a uniform starting point for all students, regardless of background and modelling experience;
- defuses the dominant perception that CM is a Software Engineering task
- emphasizes a generalizable Knowledge Management use case
- emphasizes the distinction between "graphical documentation" and "query-able knowledge"
- illustrates domain-specificity without requiring rich domain expertise
- supports analogies with business process modelling

Distinguishing Conceptualization Tasks

Initial implementation (concrete syntax)

Emphasizing "models as knowledge"

Prepare Dough (COOKING STEP)

Prepare Dough

Ingredients cost:

00:000:00:00:00

Active time:

Waiting time: 00:000:00:00:00

Needs oven
 yes
 no

Name:

0

Model queries relying on the machinereadable semantics

Standardised queries	(model query engine provided by ADOxx)
Query:	
Get all objects of class	with attribute
Input field	
Get all objects of class	OOKING STEP ▼
with attribute Needs of	oven 👻 = 👻 yes 👻
Standardised queries	
Query:	
Get all objects connected	with the object of class with the relation 👻
Input field	
Get all objects connecte	ed with the object Prepare Dough
of class 🧿 COOKING	STEP -
with the relation 🛛 😽 R	EQUIREMENT -

Domain-Specific Semantics captured in machine-readable conceptional schema

Agile Method Evolution: 2nd Iteration

Conclusions

 Strengths minimalism and ease of implementation reveals the notion of modelling method as an evolving Design Science artefact detached from software engineering domain-specific without requiring prior domain expertise relies on free OMil AB resources 	Weaknesses When presenting their own homework projects, all students reported process-centric methods. For some, the exercise creates the impression that all CM is process-centric (non-behavioural model types should be emphasized more)
 Opportunities By decoupling CM from software engineering, students are stimulated towards lateral thinking and the ability to devise modelling methods for domain-specific goals or for research (experimentation) purposes 	 Threats Dominant practices around the local industry generate a "tunnel vision" with restricting consequences: the limited goal of models as graphical documentation limited understanding of modelling agility lack of awareness on the "models as knowledge representation" perspective

Thank you!

robert.buchmann@econ.ubbcluj.ro

Ana-Maria Ghiran

anamaria.ghiran@econ.ubbcluj.ro